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1. INTRODUCTION

Let X be a real normed linear space, G be a subset of X, and F be a bounded
subset of X. The purpose of this paper is to study the following minimization
problem which is interesting since it is a generalization of the best approxima
tion problem:

infsup{llg - III :/EF} == RG(F) (1.1)

attained, where the infimum is taken over all g E G?
Letting EG(F) denote the set of points of G where the infimum is attained,

we say that G has the restricted center property if EG(F) =1= 0 for all bounded
sets Fe X. Restricted centers are a natural generalization of Chebyshev
centers and the arguments used throughout this paper are quite reminiscent
of those employed in Chebyshev center theory (see for example [1]). In this
paper, it is shown that closed subalgebras of C(X), where X is a compact
Hausdorff space, have the restricted center property. This generalizes the
known fact that closed subalgebras in C(X) are proximinal (cf. [5, p. 124]).
In addition, a stability result on the sets of centers is obtained and necessary
and sufficient conditions for a certain class of bounded sets to have a unique
restricted center are given.

2. EXISTENCE

Our aim here is to prove:

THEOREM 1. Every closed subalgebra d 01 C(X) has the restricted center
property.

We need the following notation and lemmas: X and Yare compact
Hausdorff spaces; C(X) is the space of real valued continuous functions on X;
1T: X ~ Y is a continuous surjection; C(X/1T) = {IE C(X) : I = g 0 7T,
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g E C(Y)}; CiX/7T) = {f E C(X) :f = go 7T, g E C(Y), g('\) = O}; Isc(X) is the
set of real valued lower semicontinuous functions on X; and usc(X) is the
set of real valued upper semicontinuous functions on X.

We now state four lemmas which are either evident or well-known.

LEMMA 1. Let G and H be two sets such that G "J H. Then Ra(F) ~ RH(F),
for any bounded set F.

LEMMA 2. Let X be a compact space and let d be a closed subalgebra of
C(X). Then there exists a continuous surjection 7T from X onto a compact space
Y such that d = CA(X/7T) and 7T-1(,\) = {z EX: fez) = 0 for all fE d}.

Proof This is essentially contained in [4, p. 191] and [5, p. 122].

LEMMA 3. Let X, Y be compact, 0: X -+ Ya continuous surjection and
fE Isc(X). Then P(y) = inf{f(x) : x E0-1(y)} is in Isc(Y).

Proof The above was proved for fE C(X) by Semadeni (cf. [5, p. 124]).
An examination of his proof shows that the lemma holds for f E Isc(X).

LEMMA 4. Let h E Isc(X), let Q be a closed subset of X, and let f E Isc(Q)
such that f (y) ~ h(y) for y E Q. Then the function

h'(x) = f(x)

= hex)

if XEQ

if x E X\Q

is also in Isc(X).

Proof of Theorem 1. Let B be any bounded set in C(X) and define

m(t) = sup{y(t) : y E B}

u(t) = lim sup{m(7") : 7" -+ t}

net) = inf{y(t) : y E B}

vet) = lim inf{n(7") : 7" -+ t}.

It is easy to check that u(v) is in usc(X) (lsc(X)). By Lemma 2, d = ClX/7T)
for some compact Y and continuous surjection 7T: X -+ Y. Define

2R(y) = sup{1 u(x) - v(x')1 : x, x' E 7T-1(y)},
and let

R' = max{R(y) : y E Y}.

Define R = max{11 u - v 11/2, II u Iz II, II v Iz II, R'} where Z = {x E X: f(x) = 0
for all fE d} and [I u Iz![ = max 1u(t)[, t EZ. If Z = 0, set II u Iz II
[I v Izil = o.
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We now show Ru(B);? R. An argument used in [1,2] shows that
II u - v 11/2 :::::;; Rc(x)(B). Thus, II u - v 11/2 :::::;; Rc(x)(B) :::::;; Ru(B) by Lemma I.
For all fE d, flz = 0; hence Ru(B) ;? max{11 u [z II, II v Iz II}. Also, since
for all fE d and y E Y, f!,,-l(y) is a constant, clearly R;.;cB) ;? R'. Thus
R~(B);? R.

Now suppose that there exists a y' Ed satisfying u(t) - R :::::;; y'(t) ~
vet) + R for all t E X. Then since for all x E B, v x ~ u, we have

x - R '-;: y' ~ x + R.

Hence, II x - y' II :::::;; R for all x E B and thus

Ru(B) = inf sup{11 y - x [I : x E B} ;? R ;? sup{11 y' - x II : x E B}

where the above infimum is taken over all y Ed. Hence y' is a restricted
center of B. It remains to show that such a y' exists.

Denote

V1(y) = inf{v(x) + R : x E 77-1(y), Y E Y},

U1(y) = sup{u(x) - R : x E 1T-1(y), Y E Y}.

By Lemma 3, V1(U1) is Isc(Y) (usc(Y)). Now let

vzCy) = 0 if y=,\

= v1(y) otherwise

u2(y) = 0 if y=,\

= u1(y) otherwise.

Since VI Iz ;? 0 ;? UI Iz , vzCu2) is in Isc(Y) (usc(Y)) by Lemma 4.
Hence, by the Dieudonne interposition theorem, there exists agE C(Y)

such that u2(y) :::::;; g(y) :::::;; v2(y) for all y E Y and {g E C(Y) : g(,\) = O}. Set
y' = go 1T. Then y' E C;>,(X/1T) and y' is a restricted center of B since for all
lEX,

(*) u(t) - R :::::;; U2 0 1T(t) ~ y'(t) :::::;; V2 0 1T(t) ~ vet) + R. Q.E.D.

Remark I. It is easy to check that any y' Ed satisfying (*) is in Ed(B).
A routine calculation shows that (*) characterizes Eu(B), i.e., y' E E,~(B)

iff y' E d and y' satisfies (*).

3. STABILITY

In this section, we denote by ¢>(B1 , B2) the distance in the Hausdorff
metric between two bounded sets B1 and B2 •
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THEOREM 2. Let B1 and B 2 be arbitrary bounded sets in C(X), and let
d be a closed subalgebra 0/ C(X). If 4>(B1 , B2) ~ E, then 4>(E.<AB1),

E,w(B2)) ~ 2E.

Since the proof of this theorem is very much like that of [2, Theorem 3],
we omit the proof here.

4. UNIQUENESS

Our aim here is to get a uniqueness result for restricted centers of a bounded
set Be C(X) in terms of the functions met) and net) (notation is as in the
proof of Theorem 1). Such a characterization for an arbitrary bounded set
and closed subalgebra seems, to these authors, hopeless. Hence, we assume
that the bounded set is contained in the closed subalgebra and that the
subalgebra contains a unit. By the Gelfand-Naimark Theorem we are thus
in the situation of trying to characterize those bounded sets in C(X), X
compact, having a unique center.

Under these assumptions, the centers for a bounded set B consist of

(**) {y: u(t) - R ~ yet) ~ vet) + R for alI t EO X, R = II u - v 11/2}

where we are using the notation of Theorem 1. Our final assumption is
that X be a perfect metric space. Under these hypotheses, Theorem 3 corrects
an error in [2] (i.e., the hypothesis" URI" should replace "removable" in
[2, Theorem 2]).

DEFINITION 1. A function/is said to have an unremovable discontinuity
at to if/cannot be redefined at to so as to make / continuous at to .

DEFINITION 2. A function / with an unremovable discontinuity at to is
said to have a point of unremovable discontinuity of type 1 (URI) at to if
for each E > 0, there exists a neighborhood.Ai; of to such that for alI pairs

o
of points (x, y) of continuity of/in A"; x.Ai; , If(x) - f(y)[ < E.

o 0

DEFINITION 3. A function / with an unremovable discontinuity at to is
said to have a point of unremovable discontinuity of type 2 (UR2) at to if the
unremovable discontinuity at to is not URI.

EXAMPLE 1. Let A = {Xn}:=l where Xn EO [0, 1] for alI nand Xn -+ 0.
Let/be the characteristic function of A. Then/is URI at 0.

EXAMPLE 2. sin llx is UR2 at 0.
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LEMMA 5. m and n are UR2 at to iff u and v are discontinuous at to'

Proof. It suffices to consider only the case of nand v. (=» Assume n is
UR2 at to' Now since n is in usc(X), it is also a Baire I function and hence
by Osgood's Theorem [3], n is continuous on a dense set in X. We claim v
cannot be continuous at to . To see this, note that since n is UR2 at to , there
exists an E > 0 such that for each neighborhood Ai; of to there exists a pair

o
(x, y) E Ai; X Ai; such that I n(x) - n(y)1 > E and n is continuous at x and y.

o 0

Now v continuous at to implies that there exists a %; such that Ivet) -
o

v(to)I < EI2 for all t E %; . But since the points of continuity of n are dense
o

in X and X is perfect, there exist distinct points x' and y' in %; such that
o

I n(x') - n(y')1 > E. At the points of continuity of n, net) = vet) implies
! vex') - v(i)1 > E implies either I vex') - v(to)! or I v(y') - v(to)! > E/2, a
contradiction.

(-¢=) Now suppose v is discontinuous at to . Thus for some E > 0 and
for each neighborhood J1!; ,there exists a t1 E Ai; such that I v(t1) - v(to) I > E.

o 0

Pick an %; "smalI enough" that {! inf net) - v(to) I : t E %; }< E/8. Now
o 0

since vet) = lim inf{n(r), r - t}, there exists a t1' and a to' in %; such thato
I V(t1) - n(tI')1 < E/8 > I v(to( - n(to')I. Since the points of continuity of n
are dense in X and n is in usc(X), there exists a t; and t; in %; that are pointso
of continuity of nand net;) < n(tl') + E/8 and net;) < n(to') + E/8.

Consequently, I V(tl) - n(tD: < 3E/8 > I v(to) - n(t;)I. Thus, [n(tD
n(t;) I > E/4. Since %; was "small" but arbitrary, n is not URI at to, i.e.,

o
n is UR2 at to . Q.E.D.

THEOREM 3. A bounded set B has a unique Chebyshev center in C(X) iff
met) and net) are at most URI for all t, and, at the points ofmutual continuity,
the difference met) - net) is constant.

Proof. (~) If m and/or n are UR2 at some to, then u and/or v are
discontinuous at to by the previous lemma. Since the semicontinuous functions
are of different types, then u(t) - vet) =1= constant.

Suppose now m and n are at most URI for alI t, but on the set K of points
of mutual continuity met) - net) =1= constant. In this case u(t) = net) and
vet) = net) on K, so u(t) - vet) =1= constant. Thus, in either case, we may
find a point to for which v(to) + R > u(to) - R. By Lemma 4, we can find
two continuous functions Y1 and Y2 for which the following holds:

u(t) - R ~ Yi(t) ~ vet) + R i = 1,2

Y1(tO) = v(to) + R; Y2(tO) = u(to) - R.

In this way we see that the set B possesses at least two centers.
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(<=) Suppose nand m are at most URI and the difference m(t) - n(t)
at the points of mutual continuity is constant. By Lemma 5, both u and v
are continuous on X. Osgood's Theorem asserts that the points of discon
tinuity of m constitute a set of first category; the same is true of n. Thus, the
points of mutual continuity of m and n are a dense set [3]. Since m(t) = u(t)
and n(t) = v(t) at the points of mutual continuity, u(t) - v(t) = 2R, for
all t E X. Thus u(t) - R = v(t) + R for all t E X and hence by (**), we get
that the center is unique. Q.E.D.

Remark. Suppose X is not perfect. It then contains at least one isolated
point. Thus a necessary condition for a bounded set B C C(X) to have a
unique center is that for all isolated points tey. , u(tey.) - R = v(tey.) + R. For
if u(tey.) - R < v(tey.) + R at an isolated point tey. , we may redefine a center
to have any value in [u(tey.) - R, v(tey.) + R] without affecting the continuity
of the center.
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